
Encrypted Distributed Systems
Seny Kamara 

with Archita Agarwal



2



3

4%

14,717,618,286*

* since 2013



Why so Few?

4

“…because it would have hurt Yahoo’s ability to index and search message data…” 

— J. Bonforte in NY Times

Cost?Incompetence? Lazyness?



Q: can we search on encrypted data?

5



Encrypted Search Algorithms

• Major companies 
• MongoDB, Google 
• Meta, Microsoft 
• Amazon, Cisco 
• Hitachi, Fujitsu 
• more…

6

• Funding agencies 
• NSF 
• IARPA 
• DARPA

• Startups 
• Aroki Systems 

(acquired) 
• too many to list…



Encrypted Search Algorithms

7

Property-Preserving 
Encryption (PPE) 

[BBO06]

Fully-Homomorphic 
Encryption (FHE) 

[Gentry09]

Functional Encryption 

[BSW11]

Oblivious RAM (ORAM) 

[GO96]

Structured Encryption 
(STE) 

[CGKO06,CK10]

Multi-Party 
Computation 

[Yao86,GMW87]



Efficiency

LeakageFunctionality

8



Efficiency vs. Security

9

Query Time

Det. & order-preserving enc. [BBO06]

FHE [Gentry09]

ORAM [GO96]

pk func. enc. [BDOP04]

Leakage

Not Scientific!

θ(|data|)

θ(OPT·polylog(|data|))

θ(#documents)

θ(OPT)

⟘

searchable encryption [SWP00]

structured enc. [CGKO06]



10

θ(|data|)  

[SWP00]

θ(OPT)  
+ 

Leakage 
+ 

Definitions 

[CGKO06 
CK10]

Graphs 

[CK10]

Cryptanalysis 

[IKK12]

Leakage Suppression 

[KMO18,KM19]

Dynamism 

[KPR12]

Boolean 

[CJJKRS13,PVK+14]

Subgraph 
Attacks 

[BKM19]

Databases (SQL) 

[KM18]

Ranges 

[FJK+15,DPP+16]

Forward Privacy 

[SPS14,B16]

Correlation Security 

[AKM]

Hypergraph 
Framework 

[KKM]

SQL/OPX 

[KMZZ]

SQL/DEX 

[ZKMZ]

DHTs 

[AK]

KV  
Stores 

[AK]

Blockchains 

[AKM]

Injection 
Attacks 

[ZKP16]

Known-Data 
Attacks 

[CGPR15]

Volume 
Attacks 

[KKNO16]

IARPA 
ESPADA, Blind Seer, Sealth 

[FJK+15,DPP+16]

θ(#docs) 
+ 

Definitions  

[Goh03]

Doc/OST 

[KM22]



Interdisciplinary

11

Cryptography

Databases

Graph 
AlgorithmsMachine  

Learning
Statistics

Information 
Retrieval

Data Structures 

Distributed 
Systems



12

Distributed Systems Cryptography

One-way Functions
Pseudorandom functions
Message Authentication codes
Semantic Security framework
Zero-Knowledge Proofs
Multi-party protocols
Diffie-Hellman Key Exchange
Secret Sharing
Digital Signatures
Anonymous Credentials
Proofs of Work
Encrypted Search
RSA Encryption
Universal Composability

Indistinguishability Obfuscation
Commitment Schemes
Trapdoor Functions
Leakage
Secure Function Evaluation

Hardcore bits
CS proofs
Proof of Knowledge
Hash Functions
Private Information Retrieval
Fully-Homomorphic Encryption

Logical clocks
Leader Election

Wait-free constructions
Consensus

Byzantine agreement
Lock-free systems
Atomic Snapshots

Mutual Exclusion

Message Queues
Transactional Memory

Logical clocks
Leader Election

Broadcasts
CAP theorem

Replica Synchronization
Consistency guarantees

Barriers

Spin Locks

Threads & Monitors
Counting Networks

FLP result
Remote Procedure Calls

Napster

Paxos
Internet Protocols

MPC

Encrypted 
DBs

Blockchain



Encrypted Algorithms & Encrypted Systems

13

• Q: can we design algorithms that operate on encrypted data? 

• Q: can we build systems that run on encrypted data? 
• databases, key-value stores, blockchains, …

(                         )EncK

K

• search 
• answer DB queries 
• train ML models 
• …



Q: what’s the simplest  
                       distributed data structure?

14



15

DHT



16

DHT

• Protocols: 

• Setup 

• Put(k, v) 

• Get(k) 

• Routing protocol

key k ⟹ label ℓ



Chord DHT

17

• Logical Address Space : A

•
• H1 : hashes node ids to addresses

• H2: hashes labels to addresses

• Routing

• Logarithmic sized routing tables

• Logarithmic sized paths

(𝖧𝟣, 𝖧𝟤) ← 𝖲𝖾𝗍𝗎𝗉()

00
00

1

00011

00111

01000

01001

01010

00100

00101

00110

00
01

000
00

0

01011

01100011010111001111

10000

11000

10111

10110

10101

11010

11001

11011

11100

11101

11110

11111

10100

10
011

10
01

0

10
00

1



Chord DHT : 𝖯𝗎𝗍()

18
𝗌𝗎𝖼𝖼(𝖧𝟤(ℓ𝟦))

(ℓ4, v4)𝖯𝗎𝗍(ℓ𝟦, 𝗏𝟦)

𝖧𝟤(ℓ𝟦)



Abstraction of DHTs

19

• addr : N → A

• server : L → A

• route : A X A → 2A

• fe : L → A

All nodes are 
assigned logical 
addresses

𝖧𝟣
Where should 
labels be stored?

𝗌𝗎𝖼𝖼 ∘ 𝖧𝟤

Where should clients 
send their requests

𝖧𝟥

How should 
messages be routed?

𝖥𝗂𝗑𝖾𝖽



Outline

(III) Takeaways & Conclusion

20

(I) Encrypted DHTs

❖ What are DHTs
‣ Abstraction of core components

❖ Formalize EDHTs
‣ Syntax & Security defn

❖ Construction

❖ Analysis of EDHTs
‣ Main security theorem



Formalizing EDHTs
• Define the syntax of EDHTs 
• Define the security of EDHTs

21



Formalizing EDHTs
• Define the syntax of EDHTs 
• Define the security of EDHTs

22



Formalizing EDHTs : Syntax

23

EDHT = (Gen, Setup, Put, Get)

• Executed by user  

• Generates 
cryptographic keys

• Executed by user

• Put(K, ℓ, v): stores (ℓ, v)

• Get(K, ℓ): retrieves (ℓ, v)
• Executed by trusted party  

• sets up system



Formalizing EDHTs

24

• Define the syntax of EDHT  

• Define the security of EDHTs



Adversarial Model
• Static 

• Semi-honest

2525



EDHTs Security

26

Real Ideal



EDHT Security

27

Real Ideal
Z

A

𝖦𝖾𝗍(ℓ𝟦)

Actual EDHT
protocol

Put(ℓ, v): Sets DX[l] := v 

Get(ℓ): Outputs DX[l]

𝖦𝖾𝗍(ℓ𝟦)
F

A

ℒ

Leakage: information 
learnt by adversary

EDHT is secure if Real  Ideal≈
-secureℒ



Outline

(III) Takeaways & Conclusion

28

(I) Encrypted DHTs

❖ What are DHTs
‣ Abstraction of core components

❖ Formalize EDHTs
‣ Syntax & Security defn

❖ Construction

❖ Analysis of EDHTs
‣ Main security theorem



EDHT Construction

29

Put(K, ℓ, v)

• K = (K1, K2) 

• t = FK1(ℓ) 

• e = SKE.EncK2(v) 

• DHT.Put(t, e)

Get(K, ℓ)

• K = (K1, K2)

• t = FK1(ℓ)

• e ← DHT.Get (t)

• v ← SKE.DecK2(e)

Gen(1k)

• Sample K1← {0, 1}k

• K2 ← SKE.Gen(1k)

• Output (K1, K2)

Setup()

• DHT.Setup()



Outline

(III) Takeaways & Conclusion

30

(I) Encrypted DHTs

❖ What are DHTs
‣ Abstraction of core components

❖ Formalize EDHTs
‣ Syntax & Security defn

❖ Construction

❖ Analysis of EDHTs
‣Main security theorem



Q: What kind of security are we getting?

31



What does the Adversary learn?

3232

EDHT

Q1: What information does the Adversary 
learn about pairs stored on corrupted nodes? Q2: Does it only learn information 

about the pairs it stores?



What does the Adversary learn?

Q2: Does it only learn information 
about the pairs it stores?

NO

Infer a good approximation of total 
number of pairs!

❖ Total pairs adv. holds : m
❖ Total expected pairs : ~ mn/t 

❖ if DHTs are load balanced 

Example:

33



System architecture Security

34



Properties of DHTs

35

P1: Balance P2: Non-committing allocations

.



Properties of DHTs

36

P1: Balance P2: Non-committing allocations

.

whp, the probability of �
any θ-bounded adversary �

seeing a label �
should not be more than ε

• addr : N → A
• server : L → A

• route : A X A → 2A

• fe : L → A



Properties of DHTs

37

P1: Balance P2: Non-committing allocations

.

whp, the probability of �
any θ-bounded adversary �

seeing a label �
should not be more than ε

• addr : N → A
• server : L → A

• route : A X A → 2A

• fe : L → A



When does an adversary see a label?

38

𝗌𝖾𝗋𝗏𝖾𝗋(ℓ𝟦)

𝖯𝗎𝗍(ℓ𝟦, 𝗏𝟦)

• When it stores the label or routes the 
label 



Properties of DHTs

39

P1: Balance P2: Non-committing allocations

.

whp, the probability of �
any θ-bounded adversary �

seeing a label �
should not be more than ε

much more technical!

• addr : N → A
• server : L → A

• route : A X A → 2A

• fe : L → A

Storing or routing a label



40

Leakage

Lε:
leaks the repetition pattern (when a query 
for the same label is repeated) for an ε-
fraction of queries

affected by balance ε of DHT



Main Security Theorem

41

If DHT is (ε, θ, δ)-balanced  and 
has non-committing allocations, then 
EDHT is Lε-secure 
with prob at least 1 - δ - negl(k)

Th :



       Chord is -balanced for 

 ,        and      

(ε, θ, δ)

ε =
θ
n (log n + 6 log( n

θ )) δ =
1
n2

θ ≤
n

e log n

Th :

Balance of Chord

42



       Chord is -balanced for 

 ,        and      

(ε, θ, δ)

ε =
θ
n (log n + 6 log( n

θ )) δ =
1
n2

θ ≤
n

e log n

Th :

Balance of Chord

43

ε = O( θ
n

log n) vs ε = O( θ
n )

optimal



Outline

(III) Takeaways & Conclusion

44

(I) Encrypted DHTs

❖ What are DHTs
‣ Abstraction of core components

❖ Formalize EDHTs
‣ Syntax & Security defn

❖ Construction

❖ Analysis of EDHTs
‣ Main security theorem

Transient DHTs



Outline

(I) Encrypted DHTs

(II) Encrypted Key-Value Stores

(III) Future Directions
45

(0) Introduction



46

What are Key-Value Stores?

Same as DHTs

+

Replication



47

KVS

put(“Brown”, “Pvd”)

CONSISTENCY ??
- Linearizability
- Sequential Consistency
- Quiescent Consistency
- Read-Your-Writes Consistency
- Eventual Consistency
- Causal Consistency
- …
- …



Abstraction of KVS

48

• addr : N → A

• server : L → A

• route : A X A → 2A

• fe : L → A

replicas : L → 2A



Construction of EKVS

49

Same as 

before
Put(K, ℓ, v)

• t = FK1(ℓ)

• e = SKE.EncK2(v)

• DHT.Put(t, e)
KVS.Put(t, e)



50

Security of  EKVS
Single user setting Multi user setting

Clients do not share data Clients can share data

concurrent operations on 
same piece of data possible



Properties of KVSs

51

P1: Balance

.

whp, the probability of �
any θ-bounded adversary �

seeing a label �
should not be more than ε

P2: Non-
committing 

much more 
technical!

P3: Consistency



52

Security of  EKVS
Label X, Label Ygood nodes bad nodes

Client 1

Client 2

Put (X,  1)

Get (X)

time

allowed to output 0 or 1

KVS is Sequentially Consistent

Get (Y)

Put (Y, 1)

outputs 0

CAN ONLY OUTPUT 1



53

Security of  EKVS
Single user setting Multi user setting

repetition pattern 
on pairs visible to the 

adversary

Clients can share data

concurrent operations on 
same piece of data possible

If KVS is (ε, θ, δ)-balanced, and
RYW consistent, then 
EKVS is Lε-secure 
with prob at least 1 - δ - negl(k)



54

Security of  EKVS

Single
Client

Put (X,  1) Get (X)Get (Y) Put (Y, 1)

will always output 1
because in single-user setting

RYW guarantees
Get(X) reads last Put(X) independently

of operations on Y



55

Security of  EKVS
Single user setting Multi user setting

EKVS is L-secure 
with prob at least 1 - negl(k)

repetition pattern on all 
the pairsrepetition pattern 

on pairs visible to the 
adversary

If KVS is (ε, θ, δ)-balanced, and
RYW consistent, then 
EKVS is Lε-secure 
with prob at least 1 - δ - negl(k)



Outline

(I) Encrypted DHTs

(II) Encrypted Key Value Stores

(III) Future Directions
56

(0) Introduction



57

Security of  EKVS
Single user setting Multi user setting

If KVS is (ε, θ, δ)-balanced, and
RYW consistent, then 
EKVS is Lε-secure 
with prob at least 1 - δ - negl(k)

EKVS is L-secure 
with prob at least 1 - negl(k)

operation equality on 
all the pairs

Q1: What happens w/ other   
consistency guarantees?

Q2: Are stronger notions of 
consistency better for privacy?



58

Security of  EKVS
Single user setting Multi user setting

If KVS is (ε, θ, δ)-balanced, and
RYW consistent, then 
EKVS is Lε-secure 
with prob at least 1 - δ - negl(k)

EKVS is L-secure 
with prob at least 1 - negl(k)

Q3: Can we improve security by 
assuming some consistency 
guarantees?

Q4: If no, can we show a lower 
bound on the leakage?



59

ConsistencyLeakage

Efficiency

Crypto Dis. Systems

Cryptographic Dis. Systems

???



• Acknowledgements  
• Archita Agarwal, MongoDB 
• Tarik Moataz, MongoDB 

• References 
• Encrypted Distributed Storage Systems (thesis), A. Agarwal 
• Encrypted Distributed Hash Tables, A. Agarwal, S. Kamara 
• Encrypted Key Value Stores, A. Agarwal, S. Kamara

60



61


